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Abstract—We present HMA-SAR, a heterogeneous multi-agent
reinforcement learning (MARL) framework for search-and-
rescue (SAR) with unknown, dynamic targets in completely
unknown indoor maps. The method combines a timestamp-
map state and reward shaping for sparse-reward indoor lay-
outs, a Heterogeneous Curriculum Training (HCT) scheme
with sequential policy updates and no-collision training, and a
lightweight hybrid decision fallback that guarantees progress
at test time. On 60×60 grid benchmarks with moving tar-
gets, HMA-SAR achieves higher success with fewer steps than
HAPPO/MAPPO/MASAC and vastly outperforms frontier ex-
ploration. Gazebo and real-world TurtleBot tests corroborate
feasibility.

Index Terms—Multi-Agent Systems, Swarm Robotics, Search
and Rescue, Reinforcement Learning, Curriculum Learning

I. INTRODUCTION

Multi-agent search and rescue (MASAR) requires coor-
dinated exploration, target search, and collision avoidance
under partial observability and sparse rewards [1], [2]. Cover-
age or frontier strategies are effective for static scenes but
degrade when targets move and re-enter explored regions.
RL-based exploration improves efficiency [3]–[5], yet most
studies assume static targets or known layouts. We address
dynamic targets in unknown buildings, proposing a learning-
and-planning framework that unifies exploration and target
estimation, stabilizes training under teammate non-stationarity
and map variability, and transfers to robots without intrinsic-
curiosity modules.

II. RELATED WORK

Frontier exploration [1] and patterned coverage [6] ignore
target motion and thus revisit broad areas when targets cir-
culate. MARL for exploration (independent encodings [7];
CTDE such as MAPPO/MADDPG [3], [8], [9]) rarely stud-
ies dynamic targets in unknown maps with sparse rewards.
Curricula over size/obstacles [10], [11] and curiosity [12]
help exploration; we instead use timestamp-based recency and
simple shaping with a minimal fallback planner.

This work was supported by the General Research Fund (Grant 17204222)
and the Seed Fund for Collaborative Research and General Funding
Scheme—HKU-TCL Joint Research Center for Artificial Intelligence.

III. METHOD

We model MASAR as a Dec-POMDP
⟨S, {Ai}, T , {Oi},R, γ⟩. Agents move on a 4-connected grid,
Ai = {↑, ↓,←,→}, with unknown obstacles and M targets
that step one cell per tick without crossing obstacles. Each
agent observes a cropped occupancy map with timestamps
and nearby agent poses. The objective is to maximize detected
targets within a step budget while avoiding collisions. The
overall data flow and training schedule are summarized in
Fig. 1.

A. State, Reward, and Hybrid Decision

The state encodes unknown cells, obstacles, and free cells
with a timestamp (time since last observation). Recent co-
ordinates of the agent and teammates are added as distinct
tags. This compact representation exposes explored structure,
exposure gaps, and short-term motion traces without maintain-
ing an explicit belief grid. The lightweight perception–control
backbone used for both actor and critic is shown in Fig. 2.

The reward combines exploration and search. The explo-
ration term counts newly uncovered free cells and penalizes
collisions. An anti-stall term measures whether the A* distance
(Manhattan heuristic) to the stalest region becomes shorter,
nudging agents out of cul-de-sacs. The search term scales
with the recency of visible free cells and gives a detection
bonus. This setup targets sparse-reward indoor maps with long
corridors and dead ends.

At test time, a hybrid decision prevents limit cycles: when
an agent repeats nearby poses within a short window, it tem-
porarily follows A* to the nearest unknown cell; if the area is
fully explored, it moves to the stalest free cell. Control returns
to the policy once progress resumes, so learned behavior is
preserved while loops are avoided.

B. Probabilistic Intuition from Robot Motion

A one-dimensional example illustrates mass shifts in the
absence of detections. Three adjacent cells start with equal
probability. If the robot remains stationary and detects nothing,
probability flows out through feasible target moves and in
from neighbors; balancing these fluxes yields a 2:3:2 ratio.



Fig. 1. HMA-SAR framework: environment interaction (blue), sequential policy updates (red), and horizon curriculum (orange).

Fig. 2. Network architecture: lightweight CNN with channel/token mixing; categorical action head and scalar value head.

Fig. 3. Probability transition under stationary observation: undetected steps
shift mass toward stale regions.

The timestamp signal approximates this effect in 2D: regions
inspected less recently accumulate “suspicion,” and shaping
terms steer agents there when immediate cues are absent. The
three-cell example and its steady-state ratio are illustrated in
Fig. 3.

IV. EXPERIMENTAL SETUP

We use 5,663 layouts normalized to 60 × 60. Two agents
start within a small-radius cluster; six targets move one cell per
step with equal directional probabilities and may stay. Visual
range fluctuates between four and five cells to mimic noise.
Two scenarios are evaluated: targets present from the start, and
late instantiation after at least half the map is explored with at
least two targets appearing in already explored areas. The two
evaluation scenarios are depicted in Fig. 4. Training uses batch
size 1,850 on a single 3080Ti. Baselines include frontier [1],
MAPPO [3], MASAC [4], HAPPO with resets on collision,

Fig. 4. Two scenarios: targets from the start; late spawns including in
explored regions.

and HAPPO with “no-collision, stay-still”. A* uses Manhattan
heuristic and tie-breaking on path cost g. Timestamps decay
linearly with steps since last observation.

V. RESULTS

Over 250 held-out maps with a 250-step budget, HMA-SAR
consistently outperforms learning and non-learning baselines.
In the first scenario, it reaches a 97.6% success rate with
the lowest average steps and the highest detections. Frontier
lags because moving targets revisit explored regions and force
repeated sweeps. In the second scenario, where targets appear
late and sometimes in known areas, HMA-SAR maintains an
80.9% success rate, far above HAPPO, MAPPO, MASAC, and
near-zero frontier. Timestamp recency and the anti-stall term



Fig. 5. Rviz/Gazebo outcomes: exploration and search against walking human
targets.

Fig. 6. Real-world TurtleBot trajectories: coverage in the first scenario and
dynamic search in the second.

prioritize stale regions without abandoning expansion, which
is crucial when targets oscillate between known and unknown
space.

Scaling from two to five agents increases success and
reduces steps by parallelizing coverage/search and reducing
stalls at chokepoints. Removing no-collision training causes
early penalties that bias policies away from narrow corridors;
fixing a long horizon slows convergence and overfits to large
rooms, whereas a staircase horizon stabilizes learning across
shapes and sizes. Disabling the hybrid fallback yields occa-
sional stalls on maze-like layouts; the fallback triggers rarely
but reliably restores progress.

A. Extended Details and Runtime

PPO settings are standard: discount 0.99, GAE 0.95, clip-
ping 0.2, Adam at 3 × 10−4, minibatches of 256 with
three epochs, entropy ∼ 10−3, and gradient norm clip 0.5.
Perception uses a centered crop sized to the padded map;
timestamps reset upon observation. The A* planner includes
swap-prevention to avoid immediate reversals unless distance
strictly reduces. With teammate map/pose sharing limited to
a small radius or temporarily disabled, performance drops
modestly because timestamps and fallback provide guidance.
Inference is real-time on a commodity GPU; the planner runs
on a cropped grid and is invoked only on detected loops.
Representative outcomes in simulation are shown in Fig. 5,
and real-world trajectories are visualized in Fig. 6.

VI. DISCUSSION AND LIMITATIONS

Timestamp recency serves as a lightweight surrogate for
belief updates, while a horizon curriculum normalizes ge-
ometry and sequential updates temper non-stationarity from
teammates. The fallback planner contributes robustness with-
out dominating the learned policy. Main limitations are the
discrete grid abstraction, simplified target dynamics, and no
explicit bandwidth or latency model. Future work includes
pyramid encoders for arbitrary map sizes, continuous control
with richer dynamics, and explicit communication constraints.
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